博客
关于我
数学建模——TOPSIS优劣解距法
阅读量:692 次
发布时间:2019-03-17

本文共 979 字,大约阅读时间需要 3 分钟。

TOPSIS方法:在数据分析中精准对决

什么是TOPSIS?

TOPSIS(Technique for Order Preference by Similarity to Ideal Solution,技术用于按照理想解决方案相似性进行排序)是一种多目标排序决策方法,广泛应用于数据分析尤其是综合评价场景。它通过充分挖掘原始数据的内在特征,能够精准反映各评价方案之间的差异,帮助决策者做出最优选择。

TOPSIS的核心优势

TOPSIS的核心优势在于能够利用原始数据的信息特征,避免过度依赖人工主观判断。与其他方法相比,TOPSIS能够提供更为客观的评价结果,具有较高的数据利用率和结果精准度。

TOPSIS的步骤解析

在实际应用中,TOPSIS方法通常包括以下几个关键步骤:

1.1 正向化原始数据

正向化是将原始矩阵转换为极大型的标准。对于不同类型的指标etric,转换方法如下:

(i)极小型指标转换为极大型指标

对于极小型指标xi,最佳数值为xbest。[ M = \max{|x_i - x_{best}} ]正向化后:[ x_i' = 1 - \frac{|x_i - x_{best}|}{M} ]

(ii)中间型指标转换为极大型指标

对于中间型指标xi,最佳数值为xbest。[ M = \max{|x_i - x_{best}} ]正向化后:[ x_i' = 1 - \frac{|x_i - x_{best}|}{M} ]

(iii)区间型指标转换为极大型指标

对于区间型指标,定义最佳区间为[a, b]。[ x_i' = \frac{x_i - a}{b - a} ]

1.2 标准化处理

在进行TOPSIS分析之前,需要对正向化后的矩阵 进行标准化处理,消除不同指标量量级的影响。标准化后形成的矩阵Z,将在0-1范围内。

1.3 计算得分并归一化

根据标准化后的Z矩阵,对各评价方案进行得分计算,并归一化至0-1区间。

应用场景

TOPSIS方法在多个领域具有广泛应用,尤其在以下方面:

  • 综合评价:用于评价和选择多个方案综合优势。
  • 决策支持:协助决策者在面临复杂多变的情况下做出最优选择。
  • 需求分析:帮助企业识别市场需求或产品特点。

通过以上步骤,TOPSIS目的是将复杂的数据转化为易于理解和对决的评分体系,从而为决策提供有力支持。

转载地址:http://bmehz.baihongyu.com/

你可能感兴趣的文章
NSRange 范围
查看>>
NSSet集合 无序的 不能重复的
查看>>
NSUserdefault读书笔记
查看>>
NT AUTHORITY\NETWORK SERVICE 权限问题
查看>>
NT symbols are incorrect, please fix symbols
查看>>
ntelliJ IDEA 报错:找不到包或者找不到符号
查看>>
ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
查看>>
ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
查看>>
ntpdate 通过外网同步时间
查看>>
NTPD使用/etc/ntp.conf配置时钟同步详解
查看>>
NTP及Chrony时间同步服务设置
查看>>
NTP配置
查看>>
NUC1077 Humble Numbers【数学计算+打表】
查看>>
NuGet Gallery 开源项目快速入门指南
查看>>
NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
查看>>
Nuget~管理自己的包包
查看>>
NuGet学习笔记001---了解使用NuGet给net快速获取引用
查看>>
nullnullHuge Pages
查看>>
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
Numix Core 开源项目教程
查看>>